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One of the disadvantages of papers devoted to the investigation of heat and mass trans- 
fer processes during crystal growth by numerical methods (see [i~ 2], e.g.) is that the 
meltingpoint is assumed independent of the phase composition. Therefore, the model of 
crystallization of a single-component melt was used in studying the solidification of binary 
alloys. At the same time, the construction of models for growing technologically important 
crystalline materials requires taking account of all fundamental heat and mass transfer 
processes governing the influence of inhomogeneity of the composition distribution in the 
liquid phase on the curvature of the phase interfacial boundary (see [3], say). 

The aim of this paper is to construct a method for solving the thermodiffusion problem 
of solidification of a two-component melt under conditions when no two-phase zone is formed~ 
The methodis expounded in application to the axisymmetric problem of zone melting of PbTe~ 
which has a stationary solution permitting utilization of the built-up method to obtain ito 

The influence of natural convection on the zone shape and the component temperaeure and 
concentration distribution in the melt for different values of the acceleration of gravity 
is studied in the example of this problem. 

The heat conduction equation for the temperature normalized by the maximal temperature 
on the ampul side surface T = I073~ is solved in the liquid and solid phases while the 

m 

Navier-Stokes equation in stream function ~-vortex function a} variables and the diffusion 
equation for the tellurium concentration are examined just in the liquid phase (the solid 
phase has the stoichiometric composition PbTe). The ratio between the heat conduction co- 
efficients of the solid and liquid phases is given as Is/ll = 0.203, of the specific heat as 

Cs/C 1 = 0.357, and of the densities as ps/01 = i. 

i. In a reference system connected with the heater moving at a velocity V = 0.55.i0 -7 

m/sec along the z axis in a cylindrical (r, z) coordinate system (r ~ [0~ i], z~ [--L~ L]), 
and with axial symmetry taken into account, the equations have the form 
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In the solid phase the vector v = (0, --V), in the liquid v = (u, v -- V), u~ v ~=e 
projections of the melt flow velocity vector on the r and z axes, respectively~ t2~ operator 
h is the Laplacian of the vector function, g is a unit vector parallel to the free-fall 
acceleration vector. 

The characteristic Prandtl, Schmidt, and Grashof numbers are selected equalL ~ 

Pr = ~O~cz/~z = 0.025~ Sc = v / D  = 13,  Or  = ~ g R ~ T ~ v  -2,  0 ~ Or ~ 1.86-i0 ~ �9 

Riga. Translated from Zhurnal Prikiadnoi Mekhaniki i Tekhnicheskoi Fiziki~ No. 3, pp~ 
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The problem (1.1)-(1.6) is solved with the following boundary conditions: 

i) On the axis of symmetry F~ (Fig. i) 

OT/Or = 0 ,  OdOr=O, 9 = 0 ,  ~o = 0 ;  

2) On the ampul side surface F2 

OdOr = 0 ,  ~ = 0 ,  O~/Or = O, T = l - - ? l z ] ,  

RG/Tm, z < O, 
where ? =  __RG/Tm, z > O ,  G = 8 0 ~  

3) On the interphasal surfaces ra and F4 given by the equations zl = z~(r) and z2 = 
z2(r), component mass and energy conservation conditions are realized 

ac/an = - ( 1  - m) Sc (V + vi)~c, vi~ = k(c - -  cu) - - V ~ ,  

~OT/On - -  aT~On = St  (V + vl)~, i = t ,  2, 0 ~ r ~ t ,  z = . z i ( r ) ,  

, ~ = O, O~/On = O, 

(1.7) 

where the dimensionless parameter is St = pz~v/Tm~z ; ~ is the specific heat of crystallization, 

m is the distribution coefficient, v. is the velocity of phase interface motion in a reference m 

system connected to the heater, cli is the equilibrium concentration determined by the equilib- 

rium phase diagram c = 9(T). Quantities with the subscript n denote the projections of 
their corresponding vectors on the interior normal to Fz, r4; 

4) On F5 conditions are posed only for (i.I) and have the form 

OT/az = y ~r r E  [0, i ] ,  z = - - L a n d  

OT/Oz = - - ?  ~r r E  [0, t ] ,  z = L .  

Therefore, the basic distinction of the proposed formulation of the problem is the utili- 
zation of the kinetic condition (1.7) in place of giving the equilibrium phase diagram on the 
crystallization front ca = cu = 9(T), rE [0, i], z~ =zi(r), i=i, 2 By applying an iteration build- 

up method, this permits modeling the motion of the phase interfaces. 

Condition (1.7) affords the possibility of investigating nonstationary and kinetic growth 
regimes by using kinetic phase diagrams in (1.7) to obtain m. The solution of problems close 
to equilibrium is obtained as the limit of solutions of nonequilibrium problems for low growth 
rates (k § ~ and c § c I on the interphasal boundary). 
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Fig~ i 
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Fig. 3 

The initial conditions for the problem (1.1)-(1.6) were given as follows: T(r, z) = 
i -- ylzI, ~ = 02 ~ = 0, c = const, zl = z~, z2 = z~. 

2. METHOD OF SOLUTION 

The solution of (1.2)-(1.6) is complicated by the fact that the domain occupied by the 
liquid phase changes shape. Hence, it is expedient to solve the equation determined in the 
melted zone on different meshes rearranged in the shape of the melted zone. 

This affords the possibility of using relatively coarse meshes for (i.I) in both phases 
and fine meshes for (1.2)-(1.6) in the liquid phase by compressing them in domains with large 
gradients or singularities. Equation (I.I) is solved by the method in [4] with the insertion 
of a domain of latent heat of crystallization liberation that is 4-6 difference-mesh nodes 
wide. The difference schemes for (1.2)-(1.6) are obtained by using the difference operators 
div, grad~ and A defined in [5]. They result in a conservative difference scheme on a 9-point 
pattern. Implicit schemes were used and the passage to the n + 1 time layer is realized 
iteratively. 

The sequence of solving the system of equations is proposed as follows: a) T n+1 is found 
n n from the T n, v n, zz, z2 known on the n-th layer; b) z~ +I n+1 ,z= aredetermined by using z~,z~ 

n n+1 
v1~=k(c ~-c~)-V~, v2~=k(c ~-cz2)-Vn ; c) the difference mesh is rearranged around z l , 
n+~ 

z= ; d) c~+I ~n+1 ~n+1 v~+1 are computedl e) by using the temperature Tn+~(r) (i = i, 2) is 

n+1 n+z Tn+1 n+~ n+1, , computed from the quantities z~ , z= , on the phase interface z. = z. tr); f) the 
i i 

n+~ _n+i 
equilibrium concentrations cli (r~ and mli (r) are calculated byusing Tn+1(r) When using rough 

i 
initial approximations and in kinetic growth regimes, a kinetic phase diagram should be used 
and iterations should be made in the stages a-f. 

The value of the coefficient k was selected between i0 and 50. Computations showed that 
the change in k between these limits affects the solution of this problem slightly, and 
therefore, it is not expedient to give k > 50 in analyzing diffusion growth regimes since it 
will result in the need to iterate steps a-f and in a substantial increase in the machine 
time. 

3. INFLUENCE OF NATURAL CONVECTION 

A solution of the axisymmetric the~nnodiffusion problem of zone melting of PbTe was ob- 
tained by the method proposed. 

In the absence of natural convection, mass transfer in the bulk of the melt is assured 
by diffusion, and the concentration distribution is such that its gradient is practically 
constant in the bulk of the melt. The liquid zone is shifted opposite to heater motion. 
For r = 0 the front coordinates zl and z2 are 0.92 and 0.55, respectively, while the curva- 
tures are Azl = z~(0) -- z1(1) =--0.27, Az2 = z2(0) -- z2(1) = 0.18. The phase interfaces are 
convex towards the solid phase. The isotherms for this case are presented in Fig. i with a 
10.7~ spacing. The. front deviation from the isotherm is slight and only noticeable near 
the ampul walls. 
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For Gr = i.86.10~-i.86.106 (Gr = 1.86.106 corresponds to conditions on earth) the 
temperature distribution differs slightly from that represented in Fig. 1 since the number 
Pr << I and a single-vortex convective flow, whose streamlines are presented in Fig. 2a for 
Gr = 1.86"106 , is realized in the melt. The maximal value of the velocity in the melt is 
here 0.35"10 -= m/see. 

Convection stirs up the melt intensively by resulting in the Te concentration distribu- 
tion for Gr = 1.86.106 , which is represented by the constant concentration lines with the 
i0 -~ spacing in Fig. 2b. A mixing domain that occupies practically the whole volume of the 
melt is formed at the center of the melted zone, while thin diffusion boundary layers are 
formed near the interphasal boundaries. 

Since the vortex is shifted to the dissolution front, the flow velocities near the 
dissolution front are higher than at the growth front. The results in the entrainment of 
melt with a somewhat smaller Te content from the zone axis to the ampul wall (shown by the 
arrow in Fig. 2b). Curvature of the growth front becomes equal to -0.26 for Gr = 1.86"105 
and of the dissolution front +0.26. The dependence of the diffusion boundary layer thickness 

on log Gr is represented in Fig. 3 for 0 ----- Gr <--- 1.86"106 (the diffusion boundary layer 
thickness is defined as the distance from the interphasal boundary to a point at which the 
concentration gradient equals the mean gradient over the zone length to this point). Curve 
I is the dependence ~(log Gr) near the dissolution front, while 2 is at the growth front for 
r = 0.5. 

An increase in the velocity of heater motion in the absence of convection will result in 
displacement of the zone relative to the temperature maximum until collapse of the process. 
Results of the computations confirm the deductions obtained from an analysis of the one- 
dimensional problem in [6], and they show that natural convection diminishes zone displacement 
by increasing the effective coefficient of diffusion, and therefore makes the process more 
stable, which permits raising the velocity of heater motion. 

The author is grateful to T. A. Cherepanova under whose supervision this research was 
performed. 
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